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1. Essence of the Project and its Scientific Value 

 

1.1 Purpose of the project, tasks to be accomplished for each stage and indicators of the expected results 

 

 

 In 1980-ies the study of complex structures mainly starts on the basis of executed in the space works. 

Was expressed the opinion that it would be better to install in spacecraft the “central nervous system” that, 

roughly speaking, would be the simulation of human’s nervous system. Although the main aspects of space 

equipment’s and structures sensitivity was studied the main accent were made on carbon-epoxy panels and 

similar composite materials. In the composite panels will not be used conventional methods of survey and 

sensing that are traditionally used in metal structures. It was necessary to define the operability of such 

composite panels. Also is necessary to raise the issue of hazard detection and on methods of report of 

operating personnel or equipment.  

In parallel with mentioned studies is carried out development of smart (fiber-optic and 

electromechanical) sensors with application of up-to date opto-electronic achievements. 
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In our opinion is necessary to develop the “structure- smart sensor-drive” system as integrated part 

that would be adapted to environmental conditions, would be autonomous and protected from possible 

hazards. 

The objective of work is to develop the principles of smart structures creation and automatic control 

system development.   

The topicality of problem largely is reflected in the fact that developed in the project smart (self-

controlled) structures are very attractive and applicable in having risk responsible facilities in aerospace 

industry as well as in bridges, dams, tower buildings, television towers, and others to undergoing the 

unexpected forces impact. Let’s recall the case of 2011 earthquake and tsunami in Japan that failed in awful 

state such responsible facilities as nuclear power stations, high-voltage transmission lines, tower building etc.  

From the preliminary analysis of patent search is clear that developed by group of authors universal 

system of self-controlled structures are distinguished by unique design and hardware and software. Such 

systems nowadays haven’t analogues in the world.  

The lot of theoretical and practical solutions is known in this field that is attached to the presented 

project.  

The novelty of study consists in development due the modern approach such “structure- smart sensor-

drive” system on the basis of existing ones that provides the adaptation, protection and state assesment of 

structure. 

The ground of project’s development is the acquisition by authors of Georgia patents 1173, 3415, 

3416, 1107 and published in 2009 in Boston, USA the monograph:  Controlled Structures with 

Electromechanical and Fiber-Optical Sensors. 

The fragments of study of system that would be developed by authors are given below: 

  

Regulation of operation of combined framed structures using  

electromechanical and fiber-optic sensors 

 

 There are several types of frame straining devices including those using hoist and planetary 

reduction gears. The diagrams of their application are given in Fig. 1 and 2. In the carried out experiments 

the planetary gearboxes were used. 



                   
Fig. 1. Diagram of hoist usage.               Fig. 2. Diagram of using of planetary reducer. 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Automatic regulation of seismic load for metal frames 

 

 Theoretical and experimental researches were executed on a frame model (see Fig. 3). 

 

 
Fig. 3. Frame models used in researches 

 

 Model one. Single span one storey open contour frame was made from pipes. Pipe diameter was 32.5 

mm, frame span ℓ= 680 mm, height h = 1240 mm. On one diagonal tie-bar with diameter 2.2 mm a planetary 

gearbox with electric drive and a relay with contactors were instaled.  

 The second model had the same geometrical dimensions and cross-sections, except the lower collar 

beam support added in the distance of 150 mm which made closed contour of the frame (Fig. 4). 

 



 
Fig. 4. Closed contour frame. 

 

 As it is known horizontal seismic force Sik is determined with the product of many coefficients 

including dynamic coefficient i which depends on the period of frame natural vibration and on its variation. 

Seismic loads may be regulated 2 ÷ 2.5 times.  

 In order to include AESM into frame operation it is necessary to preliminary define gap between 

AESM relay contactors which is determined by formula:  
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where T is prestrain in cable (in diagonal bracing); 

 Sik is seismic force; 

  T is cable (diagonal bracing) selfstressing force; 

 lcont is the length of contactor spring and cable including AESM;   

 E cont  F cont  is the stiffness of contactor spring and cable including AESM; 

 ℓ cabl is cable (diagonal bracing) length without AESM;  

 E cabl F cabl is cable (diagonal bracing) stiffness without AESM.   

 Here Econt, Ecabl, Fcont, and Fcabl are respective modulus of elasticity and cross-section areas of 

contactor spring and cable. 

 For determination of coefficient Ki three calculations and tests have been carried out. 

 The first calculation is based on classical method of forces according to which the mentioned frame 

models represent, in one case, 4 times statically indeterminable and, in the second case, 7 times statically 

indeterminable systems (Fig. 5). 



 
Fig. 5. Statically indeterminate systems. 

 

 As a result of testing an open contour frame we get that when strain in diagonal bracing cable was 

T+  T = 29.3 kg (0.293 kN), in case of horizontal static load Sik = 175 kg (1.75 kN), the upper joint of 

frame collar-beam was displaced for f = 23.6 mm. After switching in of AECM displacement made f = 24.6 

mm, strain in cable decreased and became T+ T=16 kg (0.16 kN). In this case coefficient Ki = 5.97. 

 Three calculations were done for the second, closed contour frame by method, as was mentioned 

above, of forces using program “SAP-2000 Student” and program “LIRA”. 

 The canonical equation in matrix expression will be:  
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 The equation can be written in the following form when Sik =1: 
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Square matrix of order 7 is reduced to that of order 5 and is solved using “MATCAD”. 
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 In experiments carried out for stating the relation of horizontal force Sik and of tension T+ T in 

diagonal cable, Sik = 50, 100 and 150 kg (0.5, 1.0 and 1.5 kN), as well as, T = 0, 20, 30, 40 and 50 kg (0, 0.2, 

0.3, 0.4 and 0.5 kN) were varied. Their relation is expressed by coefficient Ki given in Table 1. 

Table 1.  

Coefficient Ki = Sik/(T+ T) 

Research 

method 

Sik kg 

T + ∆T 

1 kg 50 kg 100 kg 150 kg K1 K2 K3 K4 K 
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Note 
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2,33k
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T = 0 

SAP-2000 
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T
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1,24k

g 
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g 
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0,80 0,83 0,77 0,53 
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T
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2,0kg 90kg 180,0k

g 

270,0k

g 

0,50 0,55 0,55 0,55 

Test (T + ∆T) 

kg 

T=0 - 10,0kg 12,0kg 18,0kg - 5,0 8,33 8,33 

T=20kg - 44,0kg 82,0kg 127,0k

g 

- 1,13 1,22 1,18 

T=30kg - 62,0kg 104,0k

g 

146,0k

g 

- 0,80 0,96 1,03 

T=40kg - 78,0kg 122,0k

g 

163,0k

g 

- 0,64 0,82 0,92 

T=50kg - 88,0kg 136,0k

g 

180,0k

g 

- 0,57 0,74 0,83 

  

 As is seen from the Table the relation between external horizontal force Sik and tension in diagonal 

cable is ambiguous and is closer to the results of calculations when pretension in the cable is higher. (T+∆T) 

=Sik/0.735=1.36 Sik can be taken as an average value necessary for stating the initial magnitude ( AESM ) of 

the gap between contactors. 

 Dynamic load in frame is induced with electric engine. Before switching in of automatic tie-coupling 

(AESM) the vibration amplitude was 1.5 mm, after switching in of AESM it was 0.5 mm. 

 In this case the efficiency of automatic straining tie-coupling was neff = 3.0; gap between contactors 

was AESM = 10 mm. 



 
Fig. 6. View of experimental steel frame with diagonal bracing. 

 

 

 

 

 Vibration damping in frames using Moon beam  

 

 Cantilever rod suspended on frame collar-beam, as a result of magnetic pull in the middle of span is 

stretched, bended and deviated from vertical. 

 As a result of magnets attraction the stretching force in the bar according to Hook’s law is: 
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 The length of the bar arc deviated from vertical is defined with expression:  
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 Hence bar elongation equals: 
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 Then stretching force in the bar will get the following expression:  

                                                             
2

0

1

2

EF dy
N dx

l dx

 
   

 



                                                    (9) 

 The static equation of stretched-bended bar will be: 
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 According to d’Alembert principle the bar movement equation may be written as: 
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Here the notations are:  

 m is linear mass of the bar; 

 EI is bar stiffness; 

 B(x,t) is magnets effect on the bar; 

 EF is bar tensional stiffness; 

 l - is bar length. 

 The solution of the equation can be presented as:  

                                                               ( , ) ( ) ( )y x t W x T t                                                         (12) 

 Substituting into the equation we get: 
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Introduce notations:  
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 Then motion equation for arbitrary external load will have the form: 
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 Consider magnets effect on the bar. 

 Unit length of the beam is acted upon with: 
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At small vibrations we have:  
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 Static uniform magnetic field with constant stress of magnetic flow Ф0 is acting on the bar.  

 At bar deviation from vertical line the forces that act on it are caused by different magnetic fields 

and their difference does not equal zero. 

 Magnet attraction force between N and S poles is directly proportional to the square of magnetic flux 

Ф0 and inversely proportional to the square of distance between magnets.  
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 Attractive forces acting on the bar placed between magnets are inter-compensated. 

 In the right part of vibration equation substitute B(x,t)R7 with 
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 We get: 
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 Find the solution in the following form: 
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 Inserting in equation and using Bubnov-Galerkin method we get:  
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 Inserting y(x,t) into 
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Then  
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or 
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  We get Duffing equation where: 

 
2 4

20

3 4

10 02

2

0

4

( )

k d W
W dx EI W dx

a dx

mw x dx



 
 

 

 



 


 

 
2

2

2

0 0

2

0

1

2

( )

EF dW d W
dx Wdx

l dx dx

mW x dx



  
  

   

 



 


 

 

Magnetic device of Moon beam 

 

 Forced vibrations of bended cantilever beam located in the strong field of two magnets can be 

adequately described with Duffing nonlinear differential equation. 

 For Moon beam operation a magnetic device is necessary. The suspended Moon rod is placed 

between two magnetic beams. 

 Attractive force of constant electromagnet is:  
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 Gap between two electromagnetic beams is: =0,5m=50sm; 

 Design attractive force is: P=1t=1000kg=10000N; 

 Coil number on beam winding is: N = 2353 coils; 



 I  is total current in winding. 

 Hence:  
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S is gap area – electromagnet cross-section; 

 Wires of 20.8 layers on the beam with 112,6 coils in each layer make approximately  4700 m. 

 Beam height is 112.6 x 4.44 = 499.9 = 500 mm.  

 A projection of 2 x 250 = 500 mm is added to beam height. 

 The total height of the beam is 1000 mm. 

 We received 1500 mm. Minu suspended magnetic bar is placed in partition of double layer panels, 

electromagnets are arranged in basement (Fig. 7).    

 
Fig. 7. Frame diagram with Moon beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The relation of frame natural vibration period to Moon beam deviation angle. 

 

 Frame span L=3.0 m; frame height H=5.0 m; frame columns and collar-beams with pipe section 

diameter - 140 mm; wall thickness - 40 mm; Moon suspended beam of strip steel is of 100 mm width and 20 

mm thickness; cross-section area A=20 cm
2
.  

 Cantilever beam linear mass is: 
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 Insert numerical data: 
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 Wire diameter:  
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 Circular core diameter or rectangular side’s perimeter of beam is: 

0,5 4 2,0 2000a X mm   . 

 Perimeter of circular core coil: 

2 6,28 0,25 1,57 157a R m mm     . 

 Better take rectangle sides as a = b = 0.5 m. 
62000 2353 4,706 10l mm    . 

 Conductor resistance by formula is: 
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Here 
1




   is resistivity of a conductor; 

    is electrical conductance of material; 

 S is conductor cross-section. 

 Moon beam natural vibrations frequency in magnetic field is defined with formula: 
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Here I  is current force equal to 31 A; 

 N is number of coils equal to 2353; 

 α - the distance from the conductor to field point is equal to 100 cm.  

Then 
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=115.3 rad/sec; = 18.36 Hz. 

 Moon beam nonlinearity coefficient is: 
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 Then Moon beam differential equation of Duffing type will be: 
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T t T t

dt
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 Stiffness in case of bending EI=21000006,67=1410
6
kgcm

2
;
      

 Stiffness in case of stretch EA=210000020=4210
6
kg; 

 Length of suspended beam L=750cm=7,5m. 

 Moon beam Duffing equation was solved according to the following rounded off initial data in 

program “MATCAD Professional”: 
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where  c =0.5 

 0   

 A = 0 

 r=6.0 

 w=18.0 

 Phase picture is received as a result of Duffing equation solution (Fig. 9). Fig 3.8 also gives the 

relation of frame natural vibration period to Moon bean angle deviation. 

 
Fig. 9. Phase picture of vibrations of the frame with Moon beam. 

 

 As a conclusion we can note that using of Moon beam for vibrations damping is quite possible in 

particular conditions. Natural vibration period for the frame changes by linear law according to Moon beam 

deviation angle. According to phase trajectory the maximum rate of vibrations is: 

Vmax=Ymax=1,46418=26,3 cm/sec 

 This problem is solved with MATCAD program. The solution is given in Fig. 10. 

 

 
Fig. 10. Phase pictures of vibrations of the frame with Moon beam 

 

 

 

 

 

 



Vibration damping in frames with combined collar-beams 

 

 Let’s consider the behavior of a frame with combined collar-beam affected upon with dynamic 

forces of seismic and wind. 

 Frame with combined collar-beam consists of posts rigidly connected to collar-beam and anchored in 

foundation. 

 Combined collar-beam is presented in two versions with parallel tie-bar and strut.  

It must be mentioned that parallel tie bar, as well as strut can be prestressed or stressless (Fig. 11.). 

  
a)                          b)                                        c) 

Fig. 11. Frame diagrams with combined cross-bars: 

 a) simple frame, b) frame with combined collar-beam (tie-bar and pendulum), c) frame with 

combined collar-beam (strut and pendulum). 

 Stressless version is considered. 

 In both cases, parallel tie-bar, as well as, strut have load suspended in the middle, though suspension 

point may be in any place. 

 The suspended load can be considered as physical or mathematical pendulum according to the 

diameter of suspension tie-bar and the dimensions of load. 

 The behavior of mathematical and physical pendulum according to immovable suspension point 

have been studied thoroughly enough. 

 In frame system operation the maximum amplitude and pendulum vibration state are of particular 

interest as with consideration of nonlinearity when pendulum deviation angles are different and pendulum 

suspension length changes, the vibration deviation and motion stability are changed respectively which is 

connected with pendulum load impacts to frame posts and failure of vibration isochronism. 

 In order to define motion state and maximum amplitude the numerical test has been carried out with 

program “MATCAD-2000”. 

 Pendulum motion equation was considered with unit frequency during 5 seconds. 

 When considering the analogous problem it has been noted that accuracy degradation for angles 

approximating 180
0
() is regarded as critical value: at transition to this value the character of motion changes 

- instead of vibrations we get rotation. 

 The same picture is noted when investigating the equation: 

    
2

2
( ) sin ( ) 0

d
t t

dt
                                                                                       (30) 

 with the only difference that accuracy degradation, when determining the vibration amplitudes, 

began when angle of deflection got over 81
0
 48’. 

 The example of a boundary value problem is given in Fig. 12. 



 
Fig. 12. Pendulum vibration at different initial angles of deflection. 

 

 At different initial angle of deviation the similar length pendulums vibrate  with different amplitudes 

but the periods of their vibrations will be similar if pendulum deviation angle does not exceed several 

degrees (13) 

 The amplitude of vibrations of one pendulum will be more, that of another will be less, but 

amplitude duration for both pendulums will be similar. This is the peculiarity of the phenomenon of 

pendulums isochronous vibration. But as it is seen from numerical experiment this phenomenon at large 

deflection of angles is infringed and this is to be considered at frame system operation when suspended 

pipelines or suspended pendulums are used as frame vibrations dampers. 

 In this case the point of suspended pendulum anchoring is not fixed and makes periodical horizontal 

and vertical movements. 

 For the analysis of joint operation of parallel tie-bars and suspended pendulum under dynamic action 

the separated or independent method can be used. 

 Differential equation of parallel tie-bar motion in air flow can be expressed with Duffing equation: 

                  
3

1 3 ( )my a y a y P t                                                                             (31) 

 where P(t) is Carman’s exciting force: 

P(t)=0,5v
2
CRSsint 

a1=4H/l; a3=8EF/l
3 

Here    H is a bunton in tie-bar; 

 l is brace length; 

 EF is brace rigidity; 

  is air density; 

 v is air flow rate; 

 CR is total aerodynamic coefficient: 

/Sh v d    

 Sh is Strouhal number; 

 d is brace cross-section. 



 The amplitude of induced vibrations of the brace is determined from the following expression: 

             3 2 2 23 2
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RA A V C S

h h
                                                                (32) 

 where h=8EF/Ml
3 

 M is brace mass.  

 Lateral oscillations of brace change the location of gravity center of physical pendulum (Fig. 13).  

 
Fig. 13. Diagram of parallel brace (brace and pendulum). 

 

 Kinetic and potential energy of physical pendulum will be: 

T=0,5I
2     

v= v1+v2 

2

1 20,5 ;    ( )(1 cos )
r

v C v m R y g
R
      

where  

 I is inertia moment of physical pendulum; 

 C is the stiffness of physical pendulum suspension; 

 g is free fall acceleration; 

 r is the height of suspension; 

 R is gravity center height of physical pendulum; 

 y is ordinate. 

 The second order Lagrange equation has the following form: 
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 If suppose that Qr=0, we get system motion equation with periodical coefficients: 

                                    
2

2

02
1 cos 0t

t


   


  


                                                          (34) 

where 

0

2 2 2

2

0

3
;

4

/

cr mgh

IR I

hA

mgA I



 

 

 

 



 

 Here A is amplitude which is received as a result of solution of brace equation. 

 As it is known the first area of instability for Mathieu equation is determined from inequality: 
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 The effect of a cross-bar combined of brace and suspended pendulum on the operation of frame 

system under dynamic action of wind and seismic is consider on example of single span, one storey steel 

frame with the following initial data: 



 Frame span - L=3,0m; 

 Frame height – H=5,0m 

 Frame beam and columns made of pipes with section diameter – 140X140mm; 

 Brace with cable diameter – 12,0mm; 

 Pendulum suspension with cable diameter – 12.0 mm; 

 Pendulum weight: G=2400 kg. 

 Brace anchors are located in the distance of 0.5 m from frame joint. Seismic action is 8 points of 

MSK-64.  

 The frequency of frame natural vibrations in the first form for simple frame is 5.995 Hz (period 

0.167 sec). The joint point of cross-bar and column has displaced horizontally for 0.004467 m. 

 The variation of frame joint displacement because of load in horizontal direction for simple systems 

is of linear dependence. 

 The frequency of natural vibrations of a frame with strut and pendulum made, by the first form, 

5.932 Hz and maximum amplitude, by the first form, is 0.004586 m. For that with parallel braces maximum 

amplitude is 0.001838 m. 

 Calculation was performed using programs “LIRA” and “MIRAZH”. 

 As a result of carried out numerical modeling (Table 2) for investigation of frame dynamic behavior 

we conclude that using brace and suspended pendulum, dynamic characteristics in frame systems, 

particularly frequency (period) and vibration amplitude can be significantly varied. 

 The best result is received when vibration amplitude decreases 2.4 times. At the same time nonlinear 

behavior of a pendulum (magnitude of deflection angle), as well as united vibrations of brace and pendulum 

and their vibrations within stability areas effect the regulation of dynamic characters in frame system.  

Table 2 

The results of numerical modeling 

№ Load № Mode Eigenvalue              Frequency   Period 

    rad/sec     1/sec 

2 1 0,027 0,027 37,666 0,167 

2 2 0,016 0,016 62,569 0,100 

2 3 0,009 0,009 111,939 0,056 

 

Frame systems with diagonal bracing and dampers placed on them 

 

 In the practice of railway electrification rigid cross-pieces (cross-bar anchoring supports) are used 

for getting anchor forces of different contact wires. 

 The supports of power lines also have the frame structure form with suspension insulator strings of 

power lines. 

 Frame supports are used for suspension of pipelines in one and two storey single span frames.  

The span structure of suspended bridges is also suspended on portal frames with pendulum type vibration 

dampers installed in constructions. In the supports of power lines and suspended pipe lines besides П-shaped 

frames there are used the A-shaped frames as well. 

 Frame system with diagonal bracings and pendulum is a complex system consisting of two separate 

systems: frame construction itself and diagonal bracings connected to each other with a pendulum. 

 Here, the word “bracing” means that the vibrations of one system affect another system and vice 

versa. 

 For physical analysis of the phenomenon in a complex system it is necessary to know the nature of 

vibrations in separate “partial” systems which make the complex system. 

 Partial system is received from a complete system when we have “rigid” anchoring of all joints 

except the given one. 

 In the considered case such limitation was done to the frame. Diagonal bracings with pendulum 

vibrate in drawing plane, as well as horizontally to drawing plane. 

 Consider two frame systems with diagonal bracings and pendulum: the first frame with symmetrical 

diagonal bracings and suspended pendulum in the middle of frame beam. The second with pendulum 

suspended in equal distances from upper joints of frame (Fig. 14a, b). 



 
Fig. 14. Diagram of a frame with symmetrical diagonal bracings and pendulums. 

 

 Frame systems can vibrate longitudinally, as well as laterally to frame plane. 

 

Motion equation of the pendulum with diagonal bracings 

 

The diagram of diagonal bracings with pendulum is given in Figs. 15 and 16.  

 
Fig. 15. General view of a frame with asymmetric diagonal bracings and pendulum. 

 
Fig. 16. Design scheme of diagonal bracings and pendulum. 

 



 Potential energy of the system is: 

                                    

22 2

3 11 1 2 1
1 2 3

2 2 2
iayo

NN N
I I I I I G h

 
             

                             (36) 

                                                  cosiayoI G h G h h                                                               (37) 

 Kinetic energy of the system is: 
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 Use the theorem of cosines (Fig. 17): 

 
Fig. 17. Geometrical diagram of bracings. 
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 The increment of bracing lengths is: 
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 Second degree Lagrange equation: 
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 for natural oscillations: Q=0, here 0
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 Determination of derivatives of potential and kinetic energy: 
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 The equation of motion of partial system with damping taken into consideration, has the following 

form: 
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where 
2 
is the frequency of natural oscillations of the partial system; 

  , ,  are nonlinearity coefficients of the system; 

  P is the free member; 

   is the coefficient of damping. 

 The frequency of natural oscillations is determined with formula: 
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 In particular case when 1 2C C C   and 3 4 0C C   the frequency of natural oscillations of the 

frame with bracings and pendulum equals: 
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 which coincides with the presented expression. 

 

Numerical example 

 For example consider two diagrams of the frame with diagonal bracings and pendulums (see Fig. 14 

a,b). 

 Initial geometrical data are given in Fig. 14 a,b for diagram. The frame is made of pipes with diameter 

D = 140 mm and wall thickness t = 36 mm, diagonal bracings are plain reinforcement with diameter D = 12 

mm, suspended pendulum is of round steel with diameter D = 32 mm, load at the end G = 12500 kg.  The 

coefficient of stiffness of diagonal bracings is: 

1 2 10670 / ;C C kg sm  3 4 5953 /C C kg cm   



 For the diagram given in Fig. 14b the frame is made of pipes with diameter D = 140 mm and wall 

thickness t = 40 mm. Diagonal bracings and pendulum suspension are made of cable with diameter  

D=12.0 mm. 

 On the end of suspended pendulum the loads, each weighting G = 2400 kg, are located. 

 The calculation of the first diagram was done in program SAP 2000. The vibrations of frame system 

happened vertically to frame plane. 

 The first period of natural vibrations of frame system in the first mode was T = 0.4456 sec. 

 Without diagonal bracings and pendulum and with the load in the middle of frame cross-piece the 

oscillation period made T = 0.4410 sec. 

 Hence, the existence of diagonal bracings with suspended pendulum changes the period of frame 

system natural oscillations for 7.4 %. 

 The first mode of frame system vibrations is given in Fig.   

 The calculation of the second diagram is performed in program “LIRA-8.2”. 

 The comparison of vibration amplitudes (in drawing plane) to a simple frame and a frame with 

diagonal bracings and two pendulums showed that in the first case the deviation was 4.467 cm and in the 

second case – 0.148 cm. 

 For simple frame the vibration period in the first mode is T = 0.167 sec.  For the frame with diagonal 

bracings and pendulum T = 0.7 sec. The difference made 76 % (Fig.). 

 Thus, it can be concluded that for damping of vibrations in frames the diagonal bracings with 

suspended loads (pendulum type) can be successfully used which significantly changes the frequency of 

vibrations (period) and decreases amplitudes.  

 

Experimental research of steel frames with combined dampers 

 

 In order to continue earlier carried out test researches for static and dynamic effects the steel frame 

have been experimentally investigated. Frame operation was studied in two ways: by physical and computer 

modeling, which have two types of dampers: combined dampers with horseshoe-shaped devices and round 

link dampers. 

 Test model (Fig. 18, 19, 20, 21, 22) represents a closed type frame made of tubular members with D = 

34 mm, pipe wall thickness t = 3.5 mm, The dimensions of frame model are: span l = 55.0 cm; frame height 

h = 122.0 cm; distance from frame support to its first collar-beam - 9.0 cm. Inside the frame a damper with 

two types of bracings is located. 

 The first type of a damper is a horseshoe circle with diameter - 15.3 cm, thickness - 6.0 mm and width 

2.5 cm. The clearance in the circle is 3.0 cm. 

 Bracings are made of cables of 1.8 mm diameter. 

 The horseshoe circle is fixed in the middle of collar-beam with rubber pod using shock absorber. A 

trussed construction is installed in 16.0 cm from the upper collar-beam of the frame. 

 The second type of a damper represents a closed circle with diameter - 15.3 cm, thickness - 6.0 mm 

and width 2.5.cm. The circle is installed in the middle of frame span on the half height of the frame. In four 

points of the circle bracings of diameter 1.8 mm are fixed in diagonal direction. 

 On the upper collar-beam of frame model an electric motor with load is mounted. In the upper joint 

of the frame static load P = 120-140 daN (1 daN –decaneuton = 1 kgf) is applied with the help of horizontal 

cable and with the use of dynamometer. 



 
Fig. 18 View of experimental model of the frame with ring bracing. 

 

 
Fig. 19. Used measuring device. 



 
Fig. 20 View of experimental model of the frame with horseshoe-shaped bracing.  

 

 
Fig. 21. Used measuring device. 



 
Fig. 22 Diagrams of frame test models with combined dampers of vibrations. 

  

  

a 
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a 



 

 
Fig. 23. Graph of frame displacement:            loading   - - - - -unloading. 

  

Static loading in joint was transmitted step-by-step with 20 decaN (six steps in all) and horizontal 

displacement of frame was measured with Macsimov’s deflection meter. Readings are given in the form of a 

table. 

 Dynamic loading of frame was done with electric motor with eccentrically arranged load. The 

registration of vibrations was done with oscillograph HO441 and vibro-sensor KH001Г. 

 The number of electric motor revolutions was registered with tachometer ИО-30. 

 Vibrations were recorded on paper film with time mark of 0.1 sec. 

 Vibrations were recorded under static load applied in the upper joint of the frame P = 60 daN and in 

case of bracings tension equal to 50 daN. 

 The frequency of forced oscillations made =18 sec. The results of processing of oscillograph 

records are given in the Table. 

 Computer modeling of frame with combined damper is accomplished in programs SAP-2000” and 

“LIRA-8”. 

 While using the both programs the horizontal load P = 150 daN applied in the upper joint of the 

frame is considered. The horizontal cable as well as horizontal bracing of upper joint is not taken into 

account. 

 Therefore, the values of frame system periods and dynamic displacements differ from experimental 

data and only their qualitative part is preserved and enables to estimate the effect using. 

 As a result of tests and computer modeling it can be concluded that using of two types of dampers in 

frames significantly change vibration periods and decrease dynamic displacements. 

c 

b 



 Compared to the usual frame the coefficient of amplitude decrease without damper is K = 1.14 for 

circular damper and K = 1.18 for horseshoe damper, i.e. frame oscillation amplitude decreases for 18 % 

(Table 3). 

      Table 3 

Frame displacement caused by static load   

(Fig. 23 a,b,c, d,e) 

Coefficient of frame oscillation amplitude reduction 

caused by dynamic load 

Frame designation   mm    Frame designation K 

Simple frame 1.9 Simple frame 1.0 

Frame with circular damper 1.35 Frame with circular damper 1.14 

Frame with horseshoe damper 1.38 Frame with horseshoe damper 1.18 

 

 

 

 

Regulation of strains of prestressed beams  

 

 Generally collar-beams are fixed to frame columns jointly and rigidly (Fig. 25). Joint support 

of the collar-beam on frame columns enables to consider it as the girder supported on two supports with 

prestressed parallel tie-bar on which AЭCM is mounted (Fig. 26, 27). 

 Double-T beam loaded with static load is taken as prestressed steel girder. 

 The displacement of not preliminarily tensioned beam as a result of uniformly distributed and 

concentrated loads is expressed with formula: 
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Here q

  is equdistributed standard load per one meter of girder; 

  P

  is concentrated standard load; 

  ℓ  beam span; 

   inertia moment of the girder; 

 E  is module of flexibility. 

 Double-T beam is I N 16 (cross-section area A = 20.0 cm
2
, =873cm

4
; q


=15daN/m; 

Ry=2100daN/cm
2
; E=2100000 daN/cm

2
). 

 1daN = 10 N = 1 kg is taken as dimension. 

 Freely supported beam span l = 324 cm. 

 The displacement of prestressed beam because of static load can be expressed with the 

following approximated formula: 
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Here X1 and X2  are prestressed and selfstrain forces; 

 h  is the distance from guy-rope axis to neutral axis. 

 Test model of steel beam represented a double-T beam I N16, steel =st.3; parallel tie-bar with 

diameter Ø2.1 mm, length of cable-tie bar L = 1600 mm; beam span l = 3240 mm. 

 In the middle part of the beam on its upper shelf an electric engine was mounted. 

 Static displacements and vibration amplitudes were measured with Maksimov’s deflection meter. 

Fig. 3.27 

 



 
Fig. 24 Diagrams of prestressed frames 

 
Fig. 25 Diagrams of prestressed frames 

 

Fig. 26 Diagrams of prestressed beam under dynamic load 

 Concentrated load is applied step-wise in the middle part of the beam and when tension in brace and 

beam displacement were measured achieved 500 daN (5.0 kN). 

 When static concentrated load achieved P = 500 daN (5.0 kN) and tension in the tie-bar achieved S = 

105 daN (1.05 kN) the displacement in the middle part of the beam made 0.9 cm, unstrained beam 

displacement made 1.2 cm. The decrease of displacement was 8.0 – 25% (Fig. 28, 29, 30, 31, 32). 

 Here “MMA” means Macsimov’s apparatus, “IND” – indicator-deflectometer 

 The exact expression for the curve of a beam or a column is: 

                                                                                                                       (3.44)  

    



 
Fig. 27 Diagrams of theoretical and experimental results of deflections, S=0. 

 
Fig. 29 Diagrams of theoretical and experimental results of deflections, S=100÷105daN. 

 
Fig. 30. Efficiency of beam prestressing for deflection and natural vibration frequency. 

 

Hence we get 
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 With concentrated forces taken into consideration: 
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 where  is delta function. 

 In our case we shall have the following expression: 
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 Using d’Alembert principle from static equation we get dynamic equation: 
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 Time dependent factors: 
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 If we substitute equations into 47, we get: 
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 Accept the solution of equation (48) as ( ) sin
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 with boundary value conditions satisfied: 
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 If we use Bubnov-Galerkin method and determine: 
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After integration when ( )E x const   and ( )m x const , we get: 
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or 
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Here  AESM

s

sss

L

hFE
M 0 ;  

 s index belongs to brace; 

 Es Fs  is brace rigidity including 
 
AESM.

  

 and hence we have: 
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 After solving the equation of motion (eq. 3.48) we define the gap between contactors with AESM 

device: 
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where P0 is concentrated force on tie; 



  f is the amplitude of tie vibration; 

 ℓ is tie span; 

 L is tie-bar length including AESM;  

 m  is uniformly distributed mass on the tie; 

 M  is concentrated mass on tie; 

  EsFs is tie-bar rigidity by AESM; 

 ih  is the distance from tie-bar axis to tie axis; 
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T


   is the frequency of natural vibrations of a beam which defined with formula: 
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where 
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When ( ) sin
x

W x
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


, we get: 
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 With consideration of axial force: 
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 By J.W. Rayleigh formula: 
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 By E. Sekhniashvili formula: 
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 Without concentrated mass (3.58 and 3.59), we have: 
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 By E. Sekhniashvili formula: 
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 By J.W. Rayleigh formula: 
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 From the reference-book: 
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 Dynamic displacements of the beam were experimentally fixed with Maksimov’s deflectometer 

according to the opening of the sector visually; when AESM was switched in sector opening decreased 3 

times when the clearance between contactors was  ∆ℓAESM=0.5 cm.   

 

 

 

 

 

 

 

 The essence of work is to develop the principles of various self-controlled structures creation.  

 The objective of work is to develop the principles of smart structures creation and automatic control 

system development. 

 For achievement of objective we map out the following tasks: 

1. Selection of smart sensors for study of structure state - marginal state; 

2. Development of sensors layout in the structures; 

3. Description of informational signals of structure’s internal stresses and deformations in sensors; 

4. Investigation of processing methods of signals received from structures; 

5. Development of actuator system; 

6. Development of “structure- smart sensor-drive” system models and carrying out of numerical 

experiment; 

7. Development of automatic control system of self-controlled structures; 

8. Development of experimental test bench and carrying out of physical experiments; 

9. Analysis of obtained results and final report.  


